Sign in

Get Unhealthy targets associated to an ALB or NLB

There was a problem that the LLM was not able to address. Please rephrase your prompt and try again.

This task retrieves and lists targets that are marked as 'unhealthy' and linked to AWS Application Load Balancers (ALB) or Network Load Balancers (NLB). This process helps in detecting non-performing targets to maintain optimal load distribution and service availability.

import boto3 from botocore.exceptions import ClientError creds = _get_creds(cred_label)['creds'] access_key = creds['username'] secret_key = creds['password'] def get_unhealthy_targets(regions, elb_arn=None): """ Fetch targets (instances) that are in "unhealthy" state for AWS Application Load Balancers (ALBs) and Network Load Balancers (NLBs). Parameters: - elb_arn (str, optional): Specific ARN of the Elastic Load Balancer to check. Default is None, which checks all ELBs. - regions (list): List of AWS regions to check. Returns: - list: A list of dictionaries containing details of unhealthy targets. """ # Initialize an empty list to store results result = [] # Loop through each specified region to check for unhealthy targets for reg in regions: try: # Create a new client for the ELBv2 service in the specified region elbv2_client = boto3.client('elbv2', aws_access_key_id=access_key,aws_secret_access_key=secret_key,region_name=reg) # Retrieve the list of all ALBs and NLBs in the current region elbs = elbv2_client.describe_load_balancers()["LoadBalancers"] # Loop through each Load Balancer and inspect its targets for elb in elbs: # If a specific ELB ARN is provided, skip all other load balancers if elb_arn and elb["LoadBalancerArn"] != elb_arn: continue # Get all target groups associated with the current load balancer target_groups = elbv2_client.describe_target_groups(LoadBalancerArn=elb["LoadBalancerArn"])["TargetGroups"] # Check the health status of each target within the target group for tg in target_groups: health_descriptions = elbv2_client.describe_target_health(TargetGroupArn=tg["TargetGroupArn"])["TargetHealthDescriptions"] # If a target is found to be "unhealthy", store its details in the result list for desc in health_descriptions: if desc["TargetHealth"]["State"] == "unhealthy": data_dict = { "target_id": desc["Target"]["Id"], "region": reg, "load_balancer_arn": elb["LoadBalancerArn"], "target_group_arn": tg["TargetGroupArn"] } result.append(data_dict) # Catch any AWS-related exceptions and print an error message except ClientError as e: print(f"ClientError in region {reg}: {e}") # Catch any other general exceptions and print an error message except Exception as e: print(f"An error occurred in region {reg}: {e}") return result # Specify the AWS regions to check for unhealthy targets #regions_to_check = ['us-east-1', 'us-west-2'] # Retrieve and print the details of any found unhealthy targets unhealthy_targets = get_unhealthy_targets(regions) if unhealthy_targets: print("Unhealthy targets detected:") for target in unhealthy_targets: print(f"Region: {target['region']}\nLoadBalancer ARN: {target['load_balancer_arn']}\nTargetGroup ARN: {target['target_group_arn']}\nTarget ID: {target['target_id']}\n") else: print("No unhealthy targets found.")
copied