Enable AWS CloudTrail Logging for Logging and Monitoring User Activity
This runbook involves configuring an AWS CloudTrail Trail to log and monitor user activities, crucial for meeting SOC2 guidelines. By capturing detailed records of API calls and user actions within AWS, CloudTrail aids in continuous auditing and real-time security analysis.
- 1I4Jg58AgFTnrLoNniBs9Create an AWS S3 bucket
1
There was a problem that the LLM was not able to address. Please rephrase your prompt and try again.This task involves setting up a unique data storage bucket in Amazon S3 for storing, managing, and retrieving data, with options for access control, versioning, and lifecycle management. S3 buckets provide a scalable and secure cloud storage solution.
inputsoutputsimport boto3 from botocore.exceptions import ClientError creds = _get_creds(cred_label)['creds'] access_key = creds['username'] secret_key = creds['password'] # AWS S3 client initialization s3_client = boto3.client('s3',aws_access_key_id=access_key,aws_secret_access_key=secret_key) # Bucket name to create #bucket_name = 'my-logging-bucket-name' # Replace with your desired bucket name # Create S3 bucket try: s3_client.create_bucket(Bucket=bucket_name) print(f"Bucket {bucket_name} created successfully.") except ClientError as e: print(f"Error creating S3 bucket {bucket_name}: {e}")copied1 - 2T5l4631JDkDI29kYWDHNUpdate the bucket policy of an AWS S3 bucket
2
Update the bucket policy of an AWS S3 bucket
There was a problem that the LLM was not able to address. Please rephrase your prompt and try again.This task involves modifying access controls and permissions of a S3 bucket to manage and secure data access, ensuring compliance with security standards and organizational requirements. This is essential for controlling and safeguarding sensitive information stored in S3. In this case the policy update is regarding write permissions for CloudTrail trail to write to S3 bucket.
inputsoutputsimport boto3 from botocore.exceptions import ClientError import json creds = _get_creds(cred_label)['creds'] access_key = creds['username'] secret_key = creds['password'] account_id = boto3.client('sts',aws_access_key_id=access_key,aws_secret_access_key=secret_key).get_caller_identity()['Account'] def update_s3_bucket_policy(bucket_name, policy): """ Update the policy of the specified S3 bucket. :param bucket_name: Name of the S3 bucket :param policy: Policy document as a JSON string """ try: s3_client = boto3.client('s3',aws_access_key_id=access_key,aws_secret_access_key=secret_key) # Convert policy string to a JSON object and back to a string # This ensures the policy is properly formatted as a JSON string policy_json = json.loads(policy) formatted_policy = json.dumps(policy_json) # Updating the bucket policy s3_client.put_bucket_policy(Bucket=bucket_name, Policy=formatted_policy) print(f"Bucket policy updated successfully for {bucket_name}") except ClientError as e: print(f"Error updating policy for bucket {bucket_name}: {e}") except Exception as e: print(f"A general error occurred: {e}") # Replace with your bucket name #bucket_name = 'your-logging-bucket-name' # Define your new bucket policy here (ensure it's a valid JSON string) new_policy=''' { "Version": "2012-10-17", "Statement": [ { "Sid": "AWSCloudTrailAclCheck20150319", "Effect": "Allow", "Principal": { "Service": "cloudtrail.amazonaws.com" }, "Action": "s3:GetBucketAcl", "Resource": "arn:aws:s3:::{bucket_name}", "Condition": { "StringEquals": { "AWS:SourceArn": "arn:aws:cloudtrail:{region_name}:{account_id}:trail/{trail_name}" } } }, { "Sid": "AWSCloudTrailWrite20150319", "Effect": "Allow", "Principal": { "Service": "cloudtrail.amazonaws.com" }, "Action": "s3:PutObject", "Resource": "arn:aws:s3:::{bucket_name}/AWSLogs/{account_id}/*", "Condition": { "StringEquals": { "AWS:SourceArn": "arn:aws:cloudtrail:{region_name}:{account_id}:trail/{trail_name}", "s3:x-amz-acl": "bucket-owner-full-control" } } } ] } '''.format(bucket_name=bucket_name, region_name=region_name, trail_name=trail_name, account_id=account_id) update_s3_bucket_policy(bucket_name, new_policy) context.proceed = Falsecopied2 - 3Tk4D72j4lmsIgEnGt5iTCreate an AWS CloudTrail trail and configuring it to an S3 bucket
3
Create an AWS CloudTrail trail and configuring it to an S3 bucket
There was a problem that the LLM was not able to address. Please rephrase your prompt and try again.This task involves establishing a CloudTrail trail to monitor and record AWS account activities, and directing the log files to a specified S3 bucket for secure and centralized storage. This setup enables efficient auditing and analysis of AWS service usage and user activities.
inputsoutputsimport boto3 from botocore.exceptions import ClientError creds = _get_creds(cred_label)['creds'] access_key = creds['username'] secret_key = creds['password'] # AWS region configuration #region_name = 'us-east-1' # Replace with your desired AWS region # AWS CloudTrail client initialization with region ct_client = boto3.client('cloudtrail',aws_access_key_id=access_key,aws_secret_access_key=secret_key, region_name=region_name) # Trail and S3 bucket configuration #trail_name = 'my-cloudtrail-trail' # Replace with your desired trail name #bucket_name = 'my-logging-bucket' # Replace with your S3 bucket name try: # Check if the trail already exists trails = ct_client.list_trails() if any(trail['Name'] == trail_name for trail in trails['Trails']): print(f"Trail {trail_name} already exists.") else: # Create the trail ct_client.create_trail(Name=trail_name, S3BucketName=bucket_name) # Start logging ct_client.start_logging(Name=trail_name) print(f"CloudTrail trail {trail_name} created and logging started to {s3_bucket_name}.") except ClientError as e: print(f"Error creating CloudTrail trail: {e}") except Exception as e: print(f"A general error occurred: {e}")copied3